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ABSTRACT 

Let C be a polygonization of a 2-dimensional closed manifold without bound- 
ary, and L(C) the set of all the faces of C, partially ordered by inclusion, with 
adjoinment of a minimal and a maximal element. Then L(C) is a lattice, and 
its characterization is given here. Also a characterization of the lattice of the 
faces of a convex 3-polytope is given. 

1. Introduction. The family F(P) of  all the faces of  a d-dimensional polytope P, 

partially ordered by inclusion, is a lattice L(P) of  height d + 1. The problem of  

characterizing these lattices, i.e., given a lattice L to decide whether L is (isomor- 

phic to) the lattice L(P) o f  some convex polytope P or  not,  is an open and difficult 

problem in the theory o f  convex polytopes. In this paper we solve the problem 

for  the relatively simple case o f  3-polytopes (Theorem 6). First we deal with the 

more  general problem of  characterizing the lattice o f  a polygonizat ion o f  a 

2-dimensional manifold. Then, using Steinitz's well-known theorem ([3], 

['5, chap. 13]), it is easy to characterize the lattice L(P) of  a 3-polytope P. 

We use the terminology and notat ion of  [4] and [5]. 

2. Definitions and notation. 

DEFINITION I. Let  E be a topological space. A set a c E is called an i-cell in 

the wide sense, briefly, an /-cell, if a is homeomorph ic  to an /-cell (in the usual 

sense). 

A 2-dimensional topological cell complex is a finite collection C of / -ce l l s  in 

the wide sense (0 _< i -< 2) in E such that :  
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a) the intersection of any two cells in C is either empty or a cell in C; 

b) for any cell a in C, the union of all the cells in C which are proper subsets 

of a, is the boundary of a (in the topological sense). 

[ C] will denote the union of all the cells in C. 

A particular case of a 2-dimensional topological cell complex is any collection C 

of cells (in the usual sense) in a Euclidean space E, which satisfies the above 

conditions. In this case we simply call C a 2-dimensional cell complex. An example 

is the 2-dimensional skeleton of any convex polytope. 

DEFINITION 2. Let M be a closed, connected, 2-dimensional manifold without 

boundary (briefly: 2-manifold). A polygonization C of M is a 2-dimensional 

topological cell complex C such that [ C[ = M. In this case, each 2-cell (1-cell, 

0-ceil) of C is also called a face (edge, vertex) of C. 

If  M is also orientable, then it is known ([2, chap. III, section 7] and [6, pp. 141, 

222, 322 note 36]) that M is embeddable in 3-dimensional Euclidean space R 3, and 

is characterized by a non-negative number, the genus of M. In this case, by "the 

genus of C"  we mean the genus of M. 
In the sequel, we use the theorem: 

THEOREM 1. Let C be a 2-dimensional topological cell complex. [ C[ is a 

2-manifold (closed, connected without boundary) if and only if 

a) every 1-cell in C is contained in exactly two 2-cells of C; 

b) for each O-cell in C, all the 1-cells (ai) and 2-cells (Pi) in C containing it may 

be cyclically ordered al,...,am and P1, "",Pro in such a way that ai = P~ ~P~-~ 

(as=P1 N P•) and m >- 3. 

c) C is not a union of two disjoint non-empty complexes. 

This statement can be found in [1, p. 46] for the case where all the 2-cells in C 

are simplices, and its generalization to our case is simple. 

We shall now give another characterization of 2-dimensional topological 

cell-complexes which are manifolds (polygonizations), in which conditions b) 

and c) are replaced by a single lattice condition. 

The family of all the faces of a d-dimensional polytope P, partially ordered 

by inclusion, is a lattice L(P) of height d + 1. The minimal element is the empty 

face, and the maximal element is the polytope P as a face of itself. In the same 

manner we define: 

DEFINITION 3. The lattice L(C) of a polygonization C is the set of all the 
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/-cells (0 < i _< 2) of C, partially ordered by inclusion, with adjoinment of a 

minimal element 0 and a maximal element jr. 

DEFINITION 4. A proper lattice is a lattice with a finite number of elements 

which satisfies the Jordan-Dedekind chain condition (I-4, p. 11]), and in which 

every closed interval of height 2 is 2 z . (2 z is the lattice of the faces of a 1-polytope, 

i.e., of  a segment. It is of height 2 and contains exactly 2 elements of height 1.) 

I f  L is a proper lattice and [c~,/3] is a closed interval in L, we denote by K~, a the 

set of all the elements of L which are of height nl and are contained in [e,/3]. The 

maximal (minimal) element of L is denoted IL (OL), and if there is no danger of  

confusion we write I (O). For K, °~ and K °t., w ~ write K,~, and K .... respectively. 

The height of an element e of L is denoted h(~); the height of the lattice L is 

h(L) = h(I).L is the lattice dual to L, and it is obvious that if L is proper, then so 

is E,. The (Euler) characteristic of a proper lattice L is 

h(L) 

z ( L ) =  ~ ( - 1 ) = + l c a r d K i .  
i=o 

DEFINmON 5. Let L be a proper lattice, and ~, an element of L such that 

h(y) > 3. We say that 7 is perforated in L if there are disjoint and non-empty sets 

A, B such that K~ = A k) B, and e V/3 = ~ for evety ~ c A,/3 E B. We say that L is 

unperforated if in L and in/~ there are no perforated elements. 

EXAMPLES. Let At, Aa be disjoint triangles, and let L be the lattice of height 3 

in which the elements of height 1 (2) are the vertices (edges) of A t and A2, partially 

ordered by inclusion, with adjoinment of a minimal element 0 and a maximal 

element I. Then L is proper, IL is perforated in L and 0c(= I~) is perforated in L. 

Let At, Az be 3-simplices whose intersection is a common vertex oz. Let L be 

the lattice wbose elements are the/-dimensional faces (0 _< i _< 2) of A~ and of Az, 

with adjoinment of a maximal and minimal element. Then L is proper, h(L) = 4 

and c~ is perforated in L. 

DEF~NFnON 6. Let L be a lattice. If there is a convex polytope the lattice of 

whose faces is (isomorphic to) L, we say that L is a P. L. (Polytope lattice). 

THEOREM 2. Let P be a d-polytope (d > 2) antl L the lattice of(the faces of) P. 

Then L is proper and unperforated, h(L) = d + 1, and z(L) = 0. 

PROOF. It is obvious that h(L) = d + 1, the number of the elements of L is 

finite, and L satisfies the Jordan-Dedekind chain condition. By Euler's Theorem 
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for polytopes (i,5, page 130]) we have z(L) = 0. We prove that every closed interval 

of height 2 in L is 2'- • 

I f  ~ E L, ~ < I, we say that 1,0, c~] is obtained from L by truncation. Obviously 

any lattice obtained from L by truncation is a P.L. (of the suitable face of P). 

Let I,~,fl] be a closed interval ofL.  1,0, fl] is aP.L. ,  therefore 1,0, fl] is also aP.L.  

(of the polytope dual to /~). [c~,/~] is obtained from 1,0,/~] by truncation and is 

therefore also a P.L. (of a polytope P'), and hence [c~,/3] is also a P.L. (of the 

polytope dual to P'). (See 1,5, p. 50, exercise 10].) In particular, if hl-e,/~] = 2 then 

[e, ~] is a P.L. of a 1-polytope, and is therefore 22. 

The fact that L is unperforated follows directly from the fact that the 1-skeletons 

of P and the polytope dual to P are connected. Q . E . D .  

In the sequel we shall see (Theorem 6) that for a lattice L of height 4 the converse 

of Theorem 2 is also true, thus we get a characterization of the lattices of (the faces 

of) 3-polytopes. 

In the sequel we consider only proper lattices of height 4. 

3. Polygonizations of 2-manifolds. 

THEOREM 3. [f C is a 2-dimensional topological cell complex such that[C[ is 

a closed connected 2-manifold without boundary (i.e. C is a polygonization), 

then L(C) is proper, of height 4, and unperforated. 

PaOOF. L(C) is proper because every edge in C contains exactly 2 vertices and 

~,ecause of condition a) in Theorem 1. Clearly h(L(C)) = 4. 

The fact that L(C) is unperforated follows easily from the fact that I C [ i s  

connected and all the 2-cells in C which contain a given vertex can be cyclically 

ordered around that vertex (conditions b) in Theorem l). Q . E . D .  

The last theorem and the next one, in their combined form as Theorem 5, are 

the main result of this section. They are an equivalent form of Theorem 1 in lattice 

terminology, where conditions a, b, c of Theorem 1 are replaced by the condition 

that the lattice be proper and unperforated. 

Theorem 4. For any unpelforated proper lattice L such that h(L) = 4 there 

exists a polygonization C such that L(C) is isomorphic to L. 

Pl~oo~. Let L be an unperforated proper lattice of height 4. We denote the 

elements of L of height 1, 2, 3 by ~i,/~i, ~i respectively. 

The fact that L is proper easily implies that card K~ > 3 for_any 7 ~ L. 



Vol. 8, 1970 CONVEX 3-POLYTOPES 61 

We now show that for any ? e L all the elements ~ in K~ and all the elements 

fit in K~ may be cyclically ordered, 71, "",% and ill, "",fi,,, so that ai V czi+l = fli 

for each 1 < i_<  n (addition of indices rood n). 

Let ? c L and "1 ~ K~. There is a fit such that ~1 < fix < ?. 

Since L is proper, K~' contains exactly two atoms, one of them is ~ ,  the other 

• r,-~-,~ contains exactly two elements; fil and f12- K~'- contains we denote by az ~z  • 

two elements, one of them a2 and the other, which is not ~t (since " l  V "z =i l l  #13z), 

denoted a3. 

Assume that the sequences ~1," ' ,%, ,  fix,'",[3,,,-~ are already defined so that 

cq~K~ for each 1_<_ i -< m, ~i V ~i+1 = fii (1 = i < m) and i # j ~  ~i # ~j, fit # flj. 
We define c~m+ ~ andflm:K-2" contains tim-1 and another element which we denote 

tim" For each 1 < i < m we have fl~ # fin, since if tim = fl~ (1 < Ic < m) then K~" 

contains e~, c~+~, c~,, (tim # fim-t implies 1¢ + 1 ¢ m and therefore c~+ 1 # am) i.e., 

more than two elements, contradicting the fact that L is proper. 

K~" contains c~ and another element ~m+x. If  a, = am+~ for some 1 < k < m, 

then K~ ~r contains fl~-l, fl~, fi,,, i.e., more then two elements, contradicting the 

fact that L is proper. I f  ~,,,+ t = cq then m = cardK~, i.e., the sequence a~, ...,c% 

exhausts K~. For, if not, let 

A = { ~ i l l _ < i < m } ,  B = K  ~ \A.  

A and B are disjoint and not empty. Since L is proper, it follows that for each 

~i ~ A and ~ e B we have h(~ V-~) > 2, hence cq V ~ = 7, i.e., ? is perforated in L, 

contradicting our assumption. 

The result is a cyclic ordering ~1," ' ,  ~n of all the elements of K~ and a cyclic 

ordering i l l , ' " ,  ft, of  elements of K~, such that ~i V ~i+ 1 = fli for each i (addition 

of indices rood n). 

We claim that the sequence P l , ' " , f l ,  exhausts K~. If  K2 r contains another 

element fl, then ~ < fl for some ~ ~ K~, and without loss of  generality we assume 
= ~2. But then K~ 2~ contains fl, fll,fl2, contradicting the fact that L is proper• 

Therefore, if 71, "",?t, are all the elements of  height 3 in L, it is possible to 

associate with each ?i a convex polygen P~ with card K~ ~ edges• 

Let M be the space consisting of all the Pi, with identification of common edges 

and vertices, and let C be the collection of  all the cells in M which are images 

of the P[s ,  their edges, and their vertices. Clearly, C is a 2-dimensional topological 

cell complex. 
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C satisfies condition a) of Theorem 1, since L is proper. Condition c) of 

Theorem 1 follows from the fact that 1 is unperforated in L. Condition b) of 

Theorem 1 follows easily from the fact that all the elements of height 3 in L are 

unperforated. The detailed proof is entirely analogous to the proof that with 

each ;~ ~ L it is possible to associate a convex polygon with card K~ vertices. 

Therefore M is a closed connected 2-dimensional manifold without boundary, 

hence C is a polygonization of M, and it is clear that L(C) is isomorphic to L. 

Q . E . D .  

Let L be an unperforated proper lattice of height 4, and let 7 ~ K3. From the 

proof of Theorem 4 it follows that one can define two orientations, which we call 

opposite, on the edges of K]:  

fll ~ fl2 ~ ... ~ f l , ~  fli and fll *-- flz ~ "" ~ fl, ~ fll . 

DEHNmON 7. Let L be an unperforated proper lattice of height 4. 

I f  it is possible, for each 7 ~K3, to define an orientation on the elements of 

K~ in such a manner that the two orientations induceJ on each f i ~ K 2  by 71,72 

which satisfy i > ~2 > fi < ~l < I are opposite, then we say that L is orientable. 

Otherwise - -  L is not orientable 

It is clear that if L is an orientable unpertbrated proper lattice of height 4 and C 

is a polygonization with L(C) isomorphic to L, then l C [ is an orientable 2-manifold. 

Moreover, if )~(L)= - 2 g  where g is a non-negative integer, then, by Euler's 

theorem for connected manifolds, the manifold t C I is of genus g. The last theorems 

may then be summarized as follows: 

THEOREM 5. A lattice L is isomorphic to the lattice of a polygonization of 

a closed, connected, orientable 2-mal2ifold without boundary of genus g if and 

only i f  L is proper, orientable, unperforated, of height 4 and z(L)= - 2g. 

4. The lattice o[ a 3-polytope. The vertices and edges of a polygonization 

form a graph without double edges and without loops. In this graph we denote 

an edge with vertices a i, a2 by (at a2), and a path through the vertices, a~, ---, a n 

(in this order) by (al,  ..., an). (Here (a~ai+l) is an edge in the graph for each 

l < i < n ) . I f a i # a j f o r e a c h l < i , j < n ( i # j ) a n d a  n # a , f o r e a c h l < i < n ,  

the path is simple, otherwise it cuts itself. If  at  # a~, the vertices a~, a~ are the ends 

of the path. A graph G is connected if for every two vertices al,  a2 in G (al # a2) 

there is a path in G with ends al,  a2. G is k-connected if every subgraph of G 

obtained by deleting any k - 1 vertices of G and the edges issuing of those vertices 

is connected. 
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Using this notation, we prove: 

T~EOREM 6. A lattice L of height 4 is a P.L. if  and only if L is proper, un- 

perforated and z(L) = O. 

PROOF. The statement "only i f "  follows directly from Theorem 2. 

Let L be a proper, unperforated lattice of height 4 with z(L) = 0. There exist 

a 2-manifold M in R 3 and a polygonization C of M such that L is isomorphic 

to L(C) (Theorem 5). The fact that M is in R 3 follows from the fact that  

z(L) = 0, for then M is orientable of  genus 0, i.e., M is a 2-sphere (see, e.g., 

[2, Chapter I l i ,  Section 7.2]). 

Steinitz's theorem ([3], [5, chap. 13]) ensures that any planar and 3-connected 

graph is isomorphic to the graph of some 3-polytope. Let G be the graph of the 

vertices and edges of  C. G is planar, so we need only to prove that G is also 3- 

connected. 

Let a t, a2 be any two vertices in G, and G' the graph obtained f rom G be de- 

leting a t, a 2 and every edge which contains at  or a2 or both. Let a3, a4 be any 

two different vertices in G'. We have to show that there exists a path in G' with 

the ends a a and a4. 

For each a tom ~ in L let a~ denote the corresponding vertex in G. We claim 

that G contains a path with the ends a3, a 4. In fact, let A be the set of  all the atoms 

~ in L such that G contains a path with ends a~, a 3 (~3 ~ A), and let B = K t \ A .  

(K t is the set of  all the atoms in L.) Clearly, for each ~;, ~j ~ A and for each ~k ~ B, 

a~ is connected to aj by a path in G, and is not connected to a k by a path in G. 

I t  follows from the proof  of  Theorem 4 that for each element ~ of  height 3 in L 

and for each ~,  ~j e K~, a~ is connected to aj by a path in G. Therefore, if B is 

not empty, then I is perforated in L - - a  contradiction. 

Hence G contains a path I with ends a3 and a4, and we may assume that l is 

simple. 

We distinguish five cases: 

CASE a: at, a2$1. 

Then l is a path in G' f rom a 3 to a 4. 

CASE b: al El, a2(~l. 

Assume 1 = (a3, "",as,  at, a6, " ' ,  a4). 

All the (2-dimensional) faces of  the polygonization C which contain the vertex a t 

may be divided into two disjoint classes A and B separated by~ the path  (as, at ,  a6) , 
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so that for each edge (a 1 a7) in C such that a 6 ~ a 7 :fi as, (a 1 a7) belongs to two 

faces in the same class, and the edge (al  as) (and also (ax a6)) belongs to two 

faces which are not in the same class. Two faces cl, c2, one of which is in A and 

the other in B, have at most two vertices in common. For if Yt, Y2 are the elements 

of  height 3 in L which correspond to ct, c2, then Yt A Y2 is an element of  height 

at most 2 in L. Hence, since L is proper, K]  1A7~ contains at most 2 atoms, aa is 

one of  the vertices common to ca and c2; if they have another common element aT, 

then necessarily a7 = a5 or av = a6. For  if a 6 5 k a7 # as, then (a~ aT) is not an 

edge in C, by the definition of the classes A, B, but then ~ V 7v = Ya and also 

cq V ~7 = Y2, which is impossible in a lattice. 

Therefore there is a class, say A, such that no face in A includes a2. Now the 

path (as, a~,a6) may be replaced in an obvious way by a path  from a s to a 6 

through the vertices of the faces in A which does not include aa. Let l' be the 

path obtained from I by this procedure. Then I' is a path in G' with ends a3, a 4. 

CASE C: aa~,-l, a2~l. 

As in case b, exchanging the roles of  at ,  a 2. 

CASE d: a t ,  a2 ~ l, a l ,  a2 are not adjacent on I. 

Assume I = (a3, . . ' ,a l ," ' ,a7,  a2, as, '",a4). As in case b, the path (aT, az, as) 

may be replaced by a path in G which is not through a2. Thus l is reduced to a 

path of the type considered in case b. 

CASE e: a~,a2~l, aa, a2 are adjacent on I. 

Assume I = (a3,. . . ,  a t ,  az, a 8 , " ' , a 4 ) .  We replace the path (a t , a2 , a s )  by 

a path (at ,  "", as) in G which is not through a2, again reducing the argument to 

that of  case b. 
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